Paper Reading AI Learner

A Comparative Study on Transfer Learning and Distance Metrics in Semantic Clustering over the COVID-19 Tweets

2021-11-16 17:44:24
Elnaz Zafarani-Moattar, Mohammad Reza Kangavari, Amir Masoud Rahmani

Abstract

This paper is a comparison study in the context of Topic Detection on COVID-19 data. There are various approaches for Topic Detection, among which the Clustering approach is selected in this paper. Clustering requires distance and calculating distance needs embedding. The aim of this research is to simultaneously study the three factors of embedding methods, distance metrics and clustering methods and their interaction. A dataset including one-month tweets collected with COVID-19-related hashtags is used for this study. Five methods, from earlier to new methods, are selected among the embedding methods: Word2Vec, fastText, GloVe, BERT and T5. Five clustering methods are investigated in this paper that are: k-means, DBSCAN, OPTICS, spectral and Jarvis-Patrick. Euclidian distance and Cosine distance as the most important distance metrics in this field are also examined. First, more than 7,500 tests are performed to tune the parameters. Then, all the different combinations of embedding methods with distance metrics and clustering methods are investigated by silhouette metric. The number of these combinations is 50 cases. First, the results of these 50 tests are examined. Then, the rank of each method is taken into account in all the tests of that method. Finally, the major variables of the research (embedding methods, distance metrics and clustering methods) are studied separately. Averaging is performed over the control variables to neutralize their effect. The experimental results show that T5 strongly outperforms other embedding methods in terms of silhouette metric. In terms of distance metrics, cosine distance is weakly better. DBSCAN is also superior to other methods in terms of clustering methods.

Abstract (translated)

URL

https://arxiv.org/abs/2111.08658

PDF

https://arxiv.org/pdf/2111.08658.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot