Paper Reading AI Learner

DiverGAN: An Efficient and Effective Single-Stage Framework for Diverse Text-to-Image Generation

2021-11-17 17:59:56
Zhenxing Zhang, Lambert Schomaker

Abstract

In this paper, we present an efficient and effective single-stage framework (DiverGAN) to generate diverse, plausible and semantically consistent images according to a natural-language description. DiverGAN adopts two novel word-level attention modules, i.e., a channel-attention module (CAM) and a pixel-attention module (PAM), which model the importance of each word in the given sentence while allowing the network to assign larger weights to the significant channels and pixels semantically aligning with the salient words. After that, Conditional Adaptive Instance-Layer Normalization (CAdaILN) is introduced to enable the linguistic cues from the sentence embedding to flexibly manipulate the amount of change in shape and texture, further improving visual-semantic representation and helping stabilize the training. Also, a dual-residual structure is developed to preserve more original visual features while allowing for deeper networks, resulting in faster convergence speed and more vivid details. Furthermore, we propose to plug a fully-connected layer into the pipeline to address the lack-of-diversity problem, since we observe that a dense layer will remarkably enhance the generative capability of the network, balancing the trade-off between a low-dimensional random latent code contributing to variants and modulation modules that use high-dimensional and textual contexts to strength feature maps. Inserting a linear layer after the second residual block achieves the best variety and quality. Both qualitative and quantitative results on benchmark data sets demonstrate the superiority of our DiverGAN for realizing diversity, without harming quality and semantic consistency.

Abstract (translated)

URL

https://arxiv.org/abs/2111.09267

PDF

https://arxiv.org/pdf/2111.09267.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot