Paper Reading AI Learner

DeepGuard: A Framework for Safeguarding Autonomous Driving Systems from Inconsistent Behavior

2021-11-18 06:00:54
Manzoor Hussain, Nazakat Ali, Jang-Eui Hong

Abstract

The deep neural networks (DNNs)based autonomous driving systems (ADSs) are expected to reduce road accidents and improve safety in the transportation domain as it removes the factor of human error from driving tasks. The DNN based ADS sometimes may exhibit erroneous or unexpected behaviors due to unexpected driving conditions which may cause accidents. It is not possible to generalize the DNN model performance for all driving conditions. Therefore, the driving conditions that were not considered during the training of the ADS may lead to unpredictable consequences for the safety of autonomous vehicles. This study proposes an autoencoder and time series analysis based anomaly detection system to prevent the safety critical inconsistent behavior of autonomous vehicles at runtime. Our approach called DeepGuard consists of two components. The first component, the inconsistent behavior predictor, is based on an autoencoder and time series analysis to reconstruct the driving scenarios. Based on reconstruction error and threshold it determines the normal and unexpected driving scenarios and predicts potential inconsistent behavior. The second component provides on the fly safety guards, that is, it automatically activates healing strategies to prevent inconsistencies in the behavior. We evaluated the performance of DeepGuard in predicting the injected anomalous driving scenarios using already available open sourced DNN based ADSs in the Udacity simulator. Our simulation results show that the best variant of DeepGuard can predict up to 93 percent on the CHAUFFEUR ADS, 83 percent on DAVE2 ADS, and 80 percent of inconsistent behavior on the EPOCH ADS model, outperforming SELFORACLE and DeepRoad. Overall, DeepGuard can prevent up to 89 percent of all predicted inconsistent behaviors of ADS by executing predefined safety guards.

Abstract (translated)

URL

https://arxiv.org/abs/2111.09533

PDF

https://arxiv.org/pdf/2111.09533.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot