Paper Reading AI Learner

To Augment or Not to Augment? A Comparative Study on Text Augmentation Techniques for Low-Resource NLP

2021-11-18 10:52:48
Gözde Gül Şahin

Abstract

Data-hungry deep neural networks have established themselves as the standard for many NLP tasks including the traditional sequence tagging ones. Despite their state-of-the-art performance on high-resource languages, they still fall behind of their statistical counter-parts in low-resource scenarios. One methodology to counter attack this problem is text augmentation, i.e., generating new synthetic training data points from existing data. Although NLP has recently witnessed a load of textual augmentation techniques, the field still lacks a systematic performance analysis on a diverse set of languages and sequence tagging tasks. To fill this gap, we investigate three categories of text augmentation methodologies which perform changes on the syntax (e.g., cropping sub-sentences), token (e.g., random word insertion) and character (e.g., character swapping) levels. We systematically compare them on part-of-speech tagging, dependency parsing and semantic role labeling for a diverse set of language families using various models including the architectures that rely on pretrained multilingual contextualized language models such as mBERT. Augmentation most significantly improves dependency parsing, followed by part-of-speech tagging and semantic role labeling. We find the experimented techniques to be effective on morphologically rich languages in general rather than analytic languages such as Vietnamese. Our results suggest that the augmentation techniques can further improve over strong baselines based on mBERT. We identify the character-level methods as the most consistent performers, while synonym replacement and syntactic augmenters provide inconsistent improvements. Finally, we discuss that the results most heavily depend on the task, language pair, and the model type.

Abstract (translated)

URL

https://arxiv.org/abs/2111.09618

PDF

https://arxiv.org/pdf/2111.09618.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot