Paper Reading AI Learner

Low Precision Decentralized Distributed Training with Heterogeneous Data

2021-11-17 20:48:09
Sai Aparna Aketi, Sangamesh Kodge, Kaushik Roy

Abstract

Decentralized distributed learning is the key to enabling large-scale machine learning (training) on the edge devices utilizing private user-generated local data, without relying on the cloud. However, practical realization of such on-device training is limited by the communication bottleneck, computation complexity of training deep models and significant data distribution skew across devices. Many feedback-based compression techniques have been proposed in the literature to reduce the communication cost and a few works propose algorithmic changes to aid the performance in the presence of skewed data distribution by improving convergence rate. To the best of our knowledge, there is no work in the literature that applies and shows compute efficient training techniques such quantization, pruning etc., for peer-to-peer decentralized learning setups. In this paper, we analyze and show the convergence of low precision decentralized training that aims to reduce the computational complexity of training and inference. Further, We study the effect of degree of skew and communication compression on the low precision decentralized training over various computer vision and Natural Language Processing (NLP) tasks. Our experiments indicate that 8-bit decentralized training has minimal accuracy loss compared to its full precision counterpart even with heterogeneous data. However, when low precision training is accompanied by communication compression through sparsification we observe 1-2% drop in accuracy. The proposed low precision decentralized training decreases computational complexity, memory usage, and communication cost by ~4x while trading off less than a 1% accuracy for both IID and non-IID data. In particular, with higher skew values, we observe an increase in accuracy (by ~0.5%) with low precision training, indicating the regularization effect of the quantization.

Abstract (translated)

URL

https://arxiv.org/abs/2111.09389

PDF

https://arxiv.org/pdf/2111.09389.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot