Paper Reading AI Learner

Neural Image Beauty Predictor Based on Bradley-Terry Model

2021-11-19 09:50:18
Shiyu Li, Hao Ma, Xiangyu Hu

Abstract

Image beauty assessment is an important subject of computer vision. Therefore, building a model to mimic the image beauty assessment becomes an important task. To better imitate the behaviours of the human visual system (HVS), a complete survey about images of different categories should be implemented. This work focuses on image beauty assessment. In this study, the pairwise evaluation method was used, which is based on the Bradley-Terry model. We believe that this method is more accurate than other image rating methods within an image group. Additionally, Convolution neural network (CNN), which is fit for image quality assessment, is used in this work. The first part of this study is a survey about the image beauty comparison of different images. The Bradley-Terry model is used for the calculated scores, which are the target of CNN model. The second part of this work focuses on the results of the image beauty prediction, including landscape images, architecture images and portrait images. The models are pretrained by the AVA dataset to improve the performance later. Then, the CNN model is trained with the surveyed images and corresponding scores. Furthermore, this work compares the results of four CNN base networks, i.e., Alex net, VGG net, Squeeze net and LSiM net, as discussed in literature. In the end, the model is evaluated by the accuracy in pairs, correlation coefficient and relative error calculated by survey results. Satisfactory results are achieved by our proposed methods with about 70 percent accuracy in pairs. Our work sheds more light on the novel image beauty assessment method. While more studies should be conducted, this method is a promising step.

Abstract (translated)

URL

https://arxiv.org/abs/2111.10127

PDF

https://arxiv.org/pdf/2111.10127.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot