Paper Reading AI Learner

Adversarial Deep Learning for Online Resource Allocation

2021-11-19 15:48:43
Bingqian Du, Zhiyi Huang, Chuan Wu

Abstract

Online algorithm is an important branch in algorithm design. Designing online algorithms with a bounded competitive ratio (in terms of worst-case performance) can be hard and usually relies on problem-specific assumptions. Inspired by adversarial training from Generative Adversarial Net (GAN) and the fact that competitive ratio of an online algorithm is based on worst-case input, we adopt deep neural networks to learn an online algorithm for a resource allocation and pricing problem from scratch, with the goal that the performance gap between offline optimum and the learned online algorithm can be minimized for worst-case input. Specifically, we leverage two neural networks as algorithm and adversary respectively and let them play a zero sum game, with the adversary being responsible for generating worst-case input while the algorithm learns the best strategy based on the input provided by the adversary. To ensure better convergence of the algorithm network (to the desired online algorithm), we propose a novel per-round update method to handle sequential decision making to break complex dependency among different rounds so that update can be done for every possible action, instead of only sampled actions. To the best of our knowledge, our work is the first using deep neural networks to design an online algorithm from the perspective of worst-case performance guarantee. Empirical studies show that our updating methods ensure convergence to Nash equilibrium and the learned algorithm outperforms state-of-the-art online algorithms under various settings.

Abstract (translated)

URL

https://arxiv.org/abs/2111.10285

PDF

https://arxiv.org/pdf/2111.10285.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot