Paper Reading AI Learner

UFO: A UniFied TransfOrmer for Vision-Language Representation Learning

2021-11-19 03:23:10
Jianfeng Wang, Xiaowei Hu, Zhe Gan, Zhengyuan Yang, Xiyang Dai, Zicheng Liu, Yumao Lu, Lijuan Wang

Abstract

In this paper, we propose a single UniFied transfOrmer (UFO), which is capable of processing either unimodal inputs (e.g., image or language) or multimodal inputs (e.g., the concatenation of the image and the question), for vision-language (VL) representation learning. Existing approaches typically design an individual network for each modality and/or a specific fusion network for multimodal tasks. To simplify the network architecture, we use a single transformer network and enforce multi-task learning during VL pre-training, which includes the image-text contrastive loss, image-text matching loss, and masked language modeling loss based on the bidirectional and the seq2seq attention mask. The same transformer network is used as the image encoder, the text encoder, or the fusion network in different pre-training tasks. Empirically, we observe less conflict among different tasks and achieve new state of the arts on visual question answering, COCO image captioning (cross-entropy optimization) and nocaps (in SPICE). On other downstream tasks, e.g., image-text retrieval, we also achieve competitive performance.

Abstract (translated)

URL

https://arxiv.org/abs/2111.10023

PDF

https://arxiv.org/pdf/2111.10023


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot