Paper Reading AI Learner

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

2021-11-22 09:26:08
Chaoyang He, Alay Dilipbhai Shah, Zhenheng Tang, Di Fan1Adarshan Naiynar Sivashunmugam, Keerti Bhogaraju, Mita Shimpi, Li Shen, Xiaowen Chu, Mahdi Soltanolkotabi, Salman Avestimehr

Abstract

Federated Learning (FL) is a distributed learning paradigm that can learn a global or personalized model from decentralized datasets on edge devices. However, in the computer vision domain, model performance in FL is far behind centralized training due to the lack of exploration in diverse tasks with a unified FL framework. FL has rarely been demonstrated effectively in advanced computer vision tasks such as object detection and image segmentation. To bridge the gap and facilitate the development of FL for computer vision tasks, in this work, we propose a federated learning library and benchmarking framework, named FedCV, to evaluate FL on the three most representative computer vision tasks: image classification, image segmentation, and object detection. We provide non-I.I.D. benchmarking datasets, models, and various reference FL algorithms. Our benchmark study suggests that there are multiple challenges that deserve future exploration: centralized training tricks may not be directly applied to FL; the non-I.I.D. dataset actually downgrades the model accuracy to some degree in different tasks; improving the system efficiency of federated training is challenging given the huge number of parameters and the per-client memory cost. We believe that such a library and benchmark, along with comparable evaluation settings, is necessary to make meaningful progress in FL on computer vision tasks. FedCV is publicly available: this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2111.11066

PDF

https://arxiv.org/pdf/2111.11066.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot