Paper Reading AI Learner

CpT: Convolutional Point Transformer for 3D Point Cloud Processing

2021-11-21 17:45:55
Chaitanya Kaul, Joshua Mitton, Hang Dai, Roderick Murray-Smith

Abstract

We present CpT: Convolutional point Transformer - a novel deep learning architecture for dealing with the unstructured nature of 3D point cloud data. CpT is an improvement over existing attention-based Convolutions Neural Networks as well as previous 3D point cloud processing transformers. It achieves this feat due to its effectiveness in creating a novel and robust attention-based point set embedding through a convolutional projection layer crafted for processing dynamically local point set neighbourhoods. The resultant point set embedding is robust to the permutations of the input points. Our novel CpT block builds over local neighbourhoods of points obtained via a dynamic graph computation at each layer of the networks' structure. It is fully differentiable and can be stacked just like convolutional layers to learn global properties of the points. We evaluate our model on standard benchmark datasets such as ModelNet40, ShapeNet Part Segmentation, and the S3DIS 3D indoor scene semantic segmentation dataset to show that our model can serve as an effective backbone for various point cloud processing tasks when compared to the existing state-of-the-art approaches.

Abstract (translated)

URL

https://arxiv.org/abs/2111.10866

PDF

https://arxiv.org/pdf/2111.10866.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot