Paper Reading AI Learner

Adversarial Examples on Segmentation Models Can be Easy to Transfer

2021-11-22 17:26:21
Jindong Gu, Hengshuang Zhao, Volker Tresp, Philip Torr

Abstract

Deep neural network-based image classification can be misled by adversarial examples with small and quasi-imperceptible perturbations. Furthermore, the adversarial examples created on one classification model can also fool another different model. The transferability of the adversarial examples has recently attracted a growing interest since it makes black-box attacks on classification models feasible. As an extension of classification, semantic segmentation has also received much attention towards its adversarial robustness. However, the transferability of adversarial examples on segmentation models has not been systematically studied. In this work, we intensively study this topic. First, we explore the overfitting phenomenon of adversarial examples on classification and segmentation models. In contrast to the observation made on classification models that the transferability is limited by overfitting to the source model, we find that the adversarial examples on segmentations do not always overfit the source models. Even when no overfitting is presented, the transferability of adversarial examples is limited. We attribute the limitation to the architectural traits of segmentation models, i.e., multi-scale object recognition. Then, we propose a simple and effective method, dubbed dynamic scaling, to overcome the limitation. The high transferability achieved by our method shows that, in contrast to the observations in previous work, adversarial examples on a segmentation model can be easy to transfer to other segmentation models. Our analysis and proposals are supported by extensive experiments.

Abstract (translated)

URL

https://arxiv.org/abs/2111.11368

PDF

https://arxiv.org/pdf/2111.11368.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot