Paper Reading AI Learner

REPLICA: Enhanced Feature Pyramid Network by Local Image Translation and Conjunct Attention for High-Resolution Breast Tumor Detection

2021-11-22 21:33:02
Yifan Zhang, Haoyu Dong, Nicolas Konz, Hanxue Gu, Maciej A. Mazurowski

Abstract

We introduce an improvement to the feature pyramid network of standard object detection models. We call our method enhanced featuRE Pyramid network by Local Image translation and Conjunct Attention, or REPLICA. REPLICA improves object detection performance by simultaneously (1) generating realistic but fake images with simulated objects to mitigate the data-hungry problem of the attention mechanism, and (2) advancing the detection model architecture through a novel modification of attention on image feature patches. Specifically, we use a convolutional autoencoder as a generator to create new images by injecting objects into images via local interpolation and reconstruction of their features extracted in hidden layers. Then due to the larger number of simulated images, we use a visual transformer to enhance outputs of each ResNet layer that serve as inputs to a feature pyramid network. We apply our methodology to the problem of detecting lesions in Digital Breast Tomosynthesis scans (DBT), a high-resolution medical imaging modality crucial in breast cancer screening. We demonstrate qualitatively and quantitatively that REPLICA can improve the accuracy of tumor detection using our enhanced standard object detection framework via experimental results.

Abstract (translated)

URL

https://arxiv.org/abs/2111.11546

PDF

https://arxiv.org/pdf/2111.11546.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot