Paper Reading AI Learner

Integrating Imitation Learning with Human Driving Data into Reinforcement Learning to Improve Training Efficiency for Autonomous Driving

2021-11-23 06:41:40
Heidi Lu

Abstract

Two current methods used to train autonomous cars are reinforcement learning and imitation learning. This research develops a new learning methodology and systematic approach in both a simulated and a smaller real world environment by integrating supervised imitation learning into reinforcement learning to make the RL training data collection process more effective and efficient. By combining the two methods, the proposed research successfully leverages the advantages of both RL and IL methods. First, a real mini-scale robot car was assembled and trained on a 6 feet by 9 feet real world track using imitation learning. During the process, a handle controller was used to control the mini-scale robot car to drive on the track by imitating a human expert driver and manually recorded the actions using Microsoft AirSim's API. 331 accurate human-like reward training samples were able to be generated and collected. Then, an agent was trained in the Microsoft AirSim simulator using reinforcement learning for 6 hours with the initial 331 reward data inputted from imitation learning training. After a 6-hour training period, the mini-scale robot car was able to successfully drive full laps around the 6 feet by 9 feet track autonomously while the mini-scale robot car was unable to complete one full lap round the track even after 30 hour training pure RL training. With 80% less training time, the new methodology produced significantly more average rewards per hour. Thus, the new methodology was able to save a significant amount of training time and can be used to accelerate the adoption of RL in autonomous driving, which would help produce more efficient and better results in the long run when applied to real life scenarios. Key Words: Reinforcement Learning (RL), Imitation Learning (IL), Autonomous Driving, Human Driving Data, CNN

Abstract (translated)

URL

https://arxiv.org/abs/2111.11673

PDF

https://arxiv.org/pdf/2111.11673.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot