Paper Reading AI Learner

RegionCL: Can Simple Region Swapping Contribute to Contrastive Learning?

2021-11-24 07:19:46
Yufei Xu, Qiming Zhang, Jing Zhang, Dacheng Tao

Abstract

Self-supervised methods (SSL) have achieved significant success via maximizing the mutual information between two augmented views, where cropping is a popular augmentation technique. Cropped regions are widely used to construct positive pairs, while the left regions after cropping have rarely been explored in existing methods, although they together constitute the same image instance and both contribute to the description of the category. In this paper, we make the first attempt to demonstrate the importance of both regions in cropping from a complete perspective and propose a simple yet effective pretext task called Region Contrastive Learning (RegionCL). Specifically, given two different images, we randomly crop a region (called the paste view) from each image with the same size and swap them to compose two new images together with the left regions (called the canvas view), respectively. Then, contrastive pairs can be efficiently constructed according to the following simple criteria, i.e., each view is (1) positive with views augmented from the same original image and (2) negative with views augmented from other images. With minor modifications to popular SSL methods, RegionCL exploits those abundant pairs and helps the model distinguish the regions features from both canvas and paste views, therefore learning better visual representations. Experiments on ImageNet, MS COCO, and Cityscapes demonstrate that RegionCL improves MoCo v2, DenseCL, and SimSiam by large margins and achieves state-of-the-art performance on classification, detection, and segmentation tasks. The code will be available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2111.12309

PDF

https://arxiv.org/pdf/2111.12309.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot