Paper Reading AI Learner

MIO : Mutual Information Optimization using Self-Supervised Binary Contrastive Learning

2021-11-24 17:51:29
Siladittya Manna, Saumik Bhattacharya, Umapada Pal

Abstract

Self-supervised contrastive learning is one of the domains which has progressed rapidly over the last few years. Most of the state-of-the-art self-supervised algorithms use a large number of negative samples, momentum updates, specific architectural modifications, or extensive training to learn good representations. Such arrangements make the overall training process complex and challenging to realize analytically. In this paper, we propose a mutual information optimization based loss function for contrastive learning where we model contrastive learning into a binary classification problem to predict if a pair is positive or not. This formulation not only helps us to track the problem mathematically but also helps us to outperform existing algorithms. Unlike the existing methods that only maximize the mutual information in a positive pair, the proposed loss function optimizes the mutual information in both positive and negative pairs. We also present a mathematical expression for the parameter gradients flowing into the projector and the displacement of the feature vectors in the feature space. This helps us to get a mathematical insight into the working principle of contrastive learning. An additive $L_2$ regularizer is also used to prevent diverging of the feature vectors and to improve performance. The proposed method outperforms the state-of-the-art algorithms on benchmark datasets like STL-10, CIFAR-10, CIFAR-100. After only 250 epochs of pre-training, the proposed model achieves the best accuracy of 85.44\%, 60.75\%, 56.81\% on CIFAR-10, STL-10, CIFAR-100 datasets, respectively.

Abstract (translated)

URL

https://arxiv.org/abs/2111.12664

PDF

https://arxiv.org/pdf/2111.12664.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot