Paper Reading AI Learner

DP-SGD vs PATE: Which Has Less Disparate Impact on GANs?

2021-11-26 17:25:46
Georgi Ganev

Abstract

Generative Adversarial Networks (GANs) are among the most popular approaches to generate synthetic data, especially images, for data sharing purposes. Given the vital importance of preserving the privacy of the individual data points in the original data, GANs are trained utilizing frameworks with robust privacy guarantees such as Differential Privacy (DP). However, these approaches remain widely unstudied beyond single performance metrics when presented with imbalanced datasets. To this end, we systematically compare GANs trained with the two best-known DP frameworks for deep learning, DP-SGD, and PATE, in different data imbalance settings from two perspectives -- the size of the classes in the generated synthetic data and their classification performance. Our analyses show that applying PATE, similarly to DP-SGD, has a disparate effect on the under/over-represented classes but in a much milder magnitude making it more robust. Interestingly, our experiments consistently show that for PATE, unlike DP-SGD, the privacy-utility trade-off is not monotonically decreasing but is much smoother and inverted U-shaped, meaning that adding a small degree of privacy actually helps generalization. However, we have also identified some settings (e.g., large imbalance) where PATE-GAN completely fails to learn some subparts of the training data.

Abstract (translated)

URL

https://arxiv.org/abs/2111.13617

PDF

https://arxiv.org/pdf/2111.13617.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot