Paper Reading AI Learner

Application of deep learning to camera trap data for ecologists in planning / engineering -- Can captivity imagery train a model which generalises to the wild?

2021-11-24 21:29:14
Ryan Curry, Cameron Trotter, Andrew Stephen McGough

Abstract

Understanding the abundance of a species is the first step towards understanding both its long-term sustainability and the impact that we may be having upon it. Ecologists use camera traps to remotely survey for the presence of specific animal species. Previous studies have shown that deep learning models can be trained to automatically detect and classify animals within camera trap imagery with high levels of confidence. However, the ability to train these models is reliant upon having enough high-quality training data. What happens when the animal is rare or the data sets are non-existent? This research proposes an approach of using images of rare animals in captivity (focusing on the Scottish wildcat) to generate the training dataset. We explore the challenges associated with generalising a model trained on captivity data when applied to data collected in the wild. The research is contextualised by the needs of ecologists in planning/engineering. Following precedents from other research, this project establishes an ensemble for object detection, image segmentation and image classification models which are then tested using different image manipulation and class structuring techniques to encourage model generalisation. The research concludes, in the context of Scottish wildcat, that models trained on captivity imagery cannot be generalised to wild camera trap imagery using existing techniques. However, final model performances based on a two-class model Wildcat vs Not Wildcat achieved an overall accuracy score of 81.6% and Wildcat accuracy score of 54.8% on a test set in which only 1% of images contained a wildcat. This suggests using captivity images is feasible with further research. This is the first research which attempts to generate a training set based on captivity data and the first to explore the development of such models in the context of ecologists in planning/engineering.

Abstract (translated)

URL

https://arxiv.org/abs/2111.12805

PDF

https://arxiv.org/pdf/2111.12805.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot