Paper Reading AI Learner

Investigation of domain gap problem in several deep-learning-based CT metal artefact reduction methods

2021-11-25 09:36:29
Muge Du, Kaichao Liang, Yinong Liu, Yuxiang Xing

Abstract

Metal artefacts in CT images may disrupt image quality and interfere with diagnosis. Recently many deep-learning-based CT metal artefact reduction (MAR) methods have been proposed. Current deep MAR methods may be troubled with domain gap problem, where methods trained on simulated data cannot perform well on practical data. In this work, we experimentally investigate two image-domain supervised methods, two dual-domain supervised methods and two image-domain unsupervised methods on a dental dataset and a torso dataset, to explore whether domain gap problem exists or is overcome. We find that I-DL-MAR and DudoNet are effective for practical data of the torso dataset, indicating the domain gap problem is solved. However, none of the investigated methods perform satisfactorily on practical data of the dental dataset. Based on the experimental results, we further analyze the causes of domain gap problem for each method and dataset, which may be beneficial for improving existing methods or designing new ones. The findings suggest that the domain gap problem in deep MAR methods remains to be addressed.

Abstract (translated)

URL

https://arxiv.org/abs/2111.12983

PDF

https://arxiv.org/pdf/2111.12983.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot