Paper Reading AI Learner

Computational simulation and the search for a quantitative description of simple reinforcement schedules

2021-11-27 17:09:14
Paulo Sergio Panse Silveira, José de Oliveira Siqueira, João Lucas Bernardy, Jessica Santiago, Thiago Cersosimo Meneses, Bianca Sanches Portela, Marcelo Frota Benvenuti

Abstract

We aim to discuss schedules of reinforcement in its theoretical and practical terms pointing to practical limitations on implementing those schedules while discussing the advantages of computational simulation. In this paper, we present a R script named Beak, built to simulate rates of behavior interacting with schedules of reinforcement. Using Beak, we've simulated data that allows an assessment of different reinforcement feedback functions (RFF). This was made with unparalleled precision, since simulations provide huge samples of data and, more importantly, simulated behavior isn't changed by the reinforcement it produces. Therefore, we can vary it systematically. We've compared different RFF for RI schedules, using as criteria: meaning, precision, parsimony and generality. Our results indicate that the best feedback function for the RI schedule was published by Baum (1981). We also propose that the model used by Killeen (1975) is a viable feedback function for the RDRL schedule. We argue that Beak paves the way for greater understanding of schedules of reinforcement, addressing still open questions about quantitative features of schedules. Also, they could guide future experiments that use schedules as theoretical and methodological tools.

Abstract (translated)

URL

https://arxiv.org/abs/2111.13943

PDF

https://arxiv.org/pdf/2111.13943.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot