Paper Reading AI Learner

AirSPEC: An IoT-empowered Air Quality Monitoring System integrated with a Machine Learning Framework to Detect and Predict defined Air Quality parameters

2021-11-28 12:13:30
Nuwan Bandara, Sahan Hettiarachchi, Phabhani Athukorala

Abstract

The air that surrounds us is the cardinal source of respiration of all life-forms. Therefore, it is undoubtedly vital to highlight that balanced air quality is utmost important to the respiratory health of all living beings, environmental homeostasis, and even economical equilibrium. Nevertheless, a gradual deterioration of air quality has been observed in the last few decades, due to the continuous increment of polluted emissions from automobiles and industries into the atmosphere. Even though many people have scarcely acknowledged the depth of the problem, the persistent efforts of determined parties, including the World Health Organization, have consistently pushed the boundaries for a qualitatively better global air homeostasis, by facilitating technology-driven initiatives to timely detect and predict air quality in regional and global scales. However, the existing frameworks for air quality monitoring lack the capability of real-time responsiveness and flexible semantic distribution. In this paper, a novel Internet of Things framework is proposed which is easily implementable, semantically distributive, and empowered by a machine learning model. The proposed system is equipped with a NodeRED dashboard which processes, visualizes, and stores the primary sensor data that are acquired through a public air quality sensor network, and further, the dashboard is integrated with a machine-learning model to obtain temporal and geo-spatial air quality predictions. ESP8266 NodeMCU is incorporated as a subscriber to the NodeRED dashboard via a message queuing telemetry transport broker to communicate quantitative air quality data or alarming emails to the end-users through the developed web and mobile applications. Therefore, the proposed system could become highly beneficial in empowering public engagement in air quality through an unoppressive, data-driven, and semantic framework.

Abstract (translated)

URL

https://arxiv.org/abs/2111.14125

PDF

https://arxiv.org/pdf/2111.14125.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot