Paper Reading AI Learner

Quantifying Fermionic Nonlinearity of Quantum Circuits

2021-11-29 15:31:43
Shigeo Hakkaku, Yuichiro Tashima, Kosuke Mitarai, Wataru Mizukami, Keisuke Fujii
         

Abstract

Variational quantum algorithms (VQA) have been proposed as one of the most promising approaches to demonstrate quantum advantage on noisy intermediate-scale quantum (NISQ) devices. However, it has been unclear whether VQA algorithms can maintain quantum advantage under the intrinsic noise of the NISQ devices, which deteriorates the quantumness. Here we propose a measure, called \textit{fermionic nonlinearity}, to quantify the classical simulatability of quantum circuits designed for simulating fermionic Hamiltonians. Specifically, we construct a Monte-Carlo type classical algorithm based on the classical simulatability of fermionic linear optics, whose sampling overhead is characterized by the fermionic nonlinearity. As a demonstration of these techniques, we calculate the upper bound of the fermionic nonlinearity of a rotation gate generated by four-body fermionic interaction under the dephasing noise. Moreover, we estimate the sampling costs of the unitary coupled cluster singles and doubles (UCCSD) quantum circuits for hydrogen chains subject to the dephasing noise. We find that, depending on the error probability and atomic spacing, there are regions where the fermionic nonlinearity becomes very small or unity, and hence the circuits are classically simulatable. We believe that our method and results help to design quantum circuits for fermionic systems with potential quantum advantages.

Abstract (translated)

URL

https://arxiv.org/abs/2111.14599

PDF

https://arxiv.org/pdf/2111.14599.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot