Paper Reading AI Learner

MIST-net: Multi-domain Integrative Swin Transformer network for Sparse-View CT Reconstruction

2021-11-28 14:43:26
Jiayi Pan, Weiwen Wu, Zhifan Gao, Heye Zhang

Abstract

The deep learning-based tomographic image reconstruction have been attracting much attention among these years. The sparse-view data reconstruction is one of typical underdetermined inverse problems, how to reconstruct high-quality CT images from dozens of projections is still a challenge in practice. To address this challenge, in this article we proposed a Multi-domain Integrative Swin Transformer network (MIST-net). First, the proposed MIST-net incorporated lavish domain features from data, residual-data, image, and residual-image using flexible network architectures. Here, the residual-data and residual-image domains network components can be considered as the data consistency module to eliminate interpolation errors in both residual data and image domains, and then further retain image details. Second, to detect the image features and further protect image edge, the trainable Sobel Filter was incorporated into the network to improve the encode-decode ability. Third, with the classical Swin transformer, we further designed the high-quality reconstruction transformer (i.e., Recformer) to improve the reconstruction performance. The Recformer inherited the power of Swin transformer to capture the global and local features of the reconstructed image. The experiments on the numerical datasets with 48 views demonstrated our proposed MIST-net provided higher reconstructed image quality with small feature recovery and edge protection than other competitors including the advanced unrolled networks. The quantitative results show that our MIST-net also obtained the best performance. The trained network was transferred to the real cardiac CT dataset with 48 views, the reconstruction results further validated the advantages of our MIST-net and further demonstrated the good robustness of our MIST in clinical applications.

Abstract (translated)

URL

https://arxiv.org/abs/2111.14831

PDF

https://arxiv.org/pdf/2111.14831.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot