Paper Reading AI Learner

A Softmax-free Loss Function Based on Predefined Optimal-distribution of Latent Features for CNN Classifier

2021-11-25 06:01:53
Qiuyu Zhu, Xuewen Zu

Abstract

In the field of pattern classification, the training of convolutional neural network classifiers is mostly end-to-end learning, and the loss function is the constraint on the final output (posterior probability) of the network, so the existence of Softmax is essential. In the case of end-to-end learning, there is usually no effective loss function that completely relies on the features of the middle layer to restrict learning, resulting in the distribution of sample latent features is not optimal, so there is still room for improvement in classification accuracy. Based on the concept of Predefined Evenly-Distributed Class Centroids (PEDCC), this article proposes a Softmax-free loss function (POD Loss) based on predefined optimal-distribution of latent features. The loss function only restricts the latent features of the samples, including the cosine distance between the latent feature vector of the sample and the center of the predefined evenly-distributed class, and the correlation between the latent features of the samples. Finally, cosine distance is used for classification. Compared with the commonly used Softmax Loss and the typical Softmax related AM-Softmax Loss, COT-Loss and PEDCC-Loss, experiments on several commonly used datasets on a typical network show that the classification performance of POD Loss is always better and easier to converge. Code is available in this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2111.15449

PDF

https://arxiv.org/pdf/2111.15449.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot