Paper Reading AI Learner

A Natural Language Processing and Deep Learning based Model for Automated Vehicle Diagnostics using Free-Text Customer Service Reports

2021-11-29 21:41:34
Ali Khodadadi, Soroush Ghandiparsi, Chen-Nee Chuah

Abstract

Initial fault detection and diagnostics are imperative measures to improve the efficiency, safety, and stability of vehicle operation. In recent years, numerous studies have investigated data-driven approaches to improve the vehicle diagnostics process using available vehicle data. Moreover, data-driven methods are employed to enhance customer-service agent interactions. In this study, we demonstrate a machine learning pipeline to improve automated vehicle diagnostics. First, Natural Language Processing (NLP) is used to automate the extraction of crucial information from free-text failure reports (generated during customers' calls to the service department). Then, deep learning algorithms are employed to validate service requests and filter vague or misleading claims. Ultimately, different classification algorithms are implemented to classify service requests so that valid service requests can be directed to the relevant service department. The proposed model- Bidirectional Long Short Term Memory (BiLSTM) along with Convolution Neural Network (CNN)- shows more than 18\% accuracy improvement in validating service requests compared to technicians' capabilities. In addition, using domain-based NLP techniques at preprocessing and feature extraction stages along with CNN-BiLSTM based request validation enhanced the accuracy ($>25\%$), sensitivity ($>39\%$), specificity ($>11\%$), and precision ($>11\%$) of Gradient Tree Boosting (GTB) service classification model. The Receiver Operating Characteristic Area Under the Curve (ROC-AUC) reached 0.82.

Abstract (translated)

URL

https://arxiv.org/abs/2111.14977

PDF

https://arxiv.org/pdf/2111.14977.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot