Paper Reading AI Learner

Graph Convolutional Module for Temporal Action Localization in Videos

2021-12-01 06:36:59
Runhao Zeng, Wenbing Huang, Mingkui Tan, Yu Rong, Peilin Zhao, Junzhou Huang, Chuang Gan

Abstract

Temporal action localization has long been researched in computer vision. Existing state-of-the-art action localization methods divide each video into multiple action units (i.e., proposals in two-stage methods and segments in one-stage methods) and then perform action recognition/regression on each of them individually, without explicitly exploiting their relations during learning. In this paper, we claim that the relations between action units play an important role in action localization, and a more powerful action detector should not only capture the local content of each action unit but also allow a wider field of view on the context related to it. To this end, we propose a general graph convolutional module (GCM) that can be easily plugged into existing action localization methods, including two-stage and one-stage paradigms. To be specific, we first construct a graph, where each action unit is represented as a node and their relations between two action units as an edge. Here, we use two types of relations, one for capturing the temporal connections between different action units, and the other one for characterizing their semantic relationship. Particularly for the temporal connections in two-stage methods, we further explore two different kinds of edges, one connecting the overlapping action units and the other one connecting surrounding but disjointed units. Upon the graph we built, we then apply graph convolutional networks (GCNs) to model the relations among different action units, which is able to learn more informative representations to enhance action localization. Experimental results show that our GCM consistently improves the performance of existing action localization methods, including two-stage methods (e.g., CBR and R-C3D) and one-stage methods (e.g., D-SSAD), verifying the generality and effectiveness of our GCM.

Abstract (translated)

URL

https://arxiv.org/abs/2112.00302

PDF

https://arxiv.org/pdf/2112.00302.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot