Paper Reading AI Learner

Deep residential representations: Using unsupervised learning to unlock elevation data for geo-demographic prediction

2021-12-02 17:10:52
Matthew Stevenson, Christophe Mues, Cristián Bravo

Abstract

LiDAR (short for "Light Detection And Ranging" or "Laser Imaging, Detection, And Ranging") technology can be used to provide detailed three-dimensional elevation maps of urban and rural landscapes. To date, airborne LiDAR imaging has been predominantly confined to the environmental and archaeological domains. However, the geographically granular and open-source nature of this data also lends itself to an array of societal, organizational and business applications where geo-demographic type data is utilised. Arguably, the complexity involved in processing this multi-dimensional data has thus far restricted its broader adoption. In this paper, we propose a series of convenient task-agnostic tile elevation embeddings to address this challenge, using recent advances from unsupervised Deep Learning. We test the potential of our embeddings by predicting seven English indices of deprivation (2019) for small geographies in the Greater London area. These indices cover a range of socio-economic outcomes and serve as a proxy for a wide variety of downstream tasks to which the embeddings can be applied. We consider the suitability of this data not just on its own but also as an auxiliary source of data in combination with demographic features, thus providing a realistic use case for the embeddings. Having trialled various model/embedding configurations, we find that our best performing embeddings lead to Root-Mean-Squared-Error (RMSE) improvements of up to 21% over using standard demographic features alone. We also demonstrate how our embedding pipeline, using Deep Learning combined with K-means clustering, produces coherent tile segments which allow the latent embedding features to be interpreted.

Abstract (translated)

URL

https://arxiv.org/abs/2112.01421

PDF

https://arxiv.org/pdf/2112.01421.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot