Paper Reading AI Learner

A network analysis of decision strategies of human experts in steel manufacturing

2021-12-03 16:09:34
Daniel Christopher Merten, Prof. Dr. Marc-Thorsten Hütt, Prof. Dr. Yilmaz Uygun

Abstract

Steel production scheduling is typically accomplished by human expert planners. Hence, instead of fully automated scheduling systems steel manufacturers prefer auxiliary recommendation algorithms. Through the suggestion of suitable orders, these algorithms assist human expert planners who are tasked with the selection and scheduling of production orders. However, it is hard to estimate, what degree of complexity these algorithms should have as steel campaign planning lacks precise rule-based procedures; in fact, it requires extensive domain knowledge as well as intuition that can only be acquired by years of business experience. Here, instead of developing new algorithms or improving older ones, we introduce a shuffling-aided network method to assess the complexity of the selection patterns established by a human expert. This technique allows us to formalize and represent the tacit knowledge that enters the campaign planning. As a result of the network analysis, we have discovered that the choice of production orders is primarily determined by the orders' carbon content. Surprisingly, trace elements like manganese, silicon, and titanium have a lesser impact on the selection decision than assumed by the pertinent literature. Our approach can serve as an input to a range of decision-support systems, whenever a human expert needs to create groups of orders ('campaigns') that fulfill certain implicit selection criteria.

Abstract (translated)

URL

https://arxiv.org/abs/2112.01991

PDF

https://arxiv.org/pdf/2112.01991.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot