Paper Reading AI Learner

The Box Size Confidence Bias Harms Your Object Detector

2021-12-03 13:32:04
Johannes Gilg, Torben Teepe, Fabian Herzog, Gerhard Rigoll

Abstract

Countless applications depend on accurate predictions with reliable confidence estimates from modern object detectors. It is well known, however, that neural networks including object detectors produce miscalibrated confidence estimates. Recent work even suggests that detectors' confidence predictions are biased with respect to object size and position, but it is still unclear how this bias relates to the performance of the affected object detectors. We formally prove that the conditional confidence bias is harming the expected performance of object detectors and empirically validate these findings. Specifically, we demonstrate how to modify the histogram binning calibration to not only avoid performance impairment but also improve performance through conditional confidence calibration. We further find that the confidence bias is also present in detections generated on the training data of the detector, which we leverage to perform our de-biasing without using additional data. Moreover, Test Time Augmentation magnifies this bias, which results in even larger performance gains from our calibration method. Finally, we validate our findings on a diverse set of object detection architectures and show improvements of up to 0.6 mAP and 0.8 mAP50 without extra data or training.

Abstract (translated)

URL

https://arxiv.org/abs/2112.01901

PDF

https://arxiv.org/pdf/2112.01901.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot