Paper Reading AI Learner

View-Consistent Metal Segmentation in the Projection Domain for Metal Artifact Reduction in CBCT -- An Investigation of Potential Improvement

2021-12-03 15:09:13
Tristan M. Gottschalk, Andreas Maier, Florian Kordon, Björn W. Kreher

Abstract

The positive outcome of a trauma intervention depends on an intraoperative evaluation of inserted metallic implants. Due to occurring metal artifacts, the quality of this evaluation heavily depends on the performance of so-called Metal Artifact Reduction methods (MAR). The majority of these MAR methods require prior segmentation of the inserted metal objects. Therefore, typically a rather simple thresholding-based segmentation method in the reconstructed 3D volume is applied, despite some major disadvantages. With this publication, the potential of shifting the segmentation task to a learning-based, view-consistent 2D projection-based method on the downstream MAR's outcome is investigated. For segmenting the present metal, a rather simple learning-based 2D projection-wise segmentation network that is trained using real data acquired during cadaver studies, is examined. To overcome the disadvantages that come along with a 2D projection-wise segmentation, a Consistency Filter is proposed. The influence of the shifted segmentation domain is investigated by comparing the results of the standard fsMAR with a modified fsMAR version using the new segmentation masks. With a quantitative and qualitative evaluation on real cadaver data, the investigated approach showed an increased MAR performance and a high insensitivity against metal artifacts. For cases with metal outside the reconstruction's FoV or cases with vanishing metal, a significant reduction in artifacts could be shown. Thus, increases of up to roughly 3 dB w.r.t. the mean PSNR metric over all slices and up to 9 dB for single slices were achieved. The shown results reveal a beneficial influence of the shift to a 2D-based segmentation method on real data for downstream use with a MAR method, like the fsMAR.

Abstract (translated)

URL

https://arxiv.org/abs/2112.02101

PDF

https://arxiv.org/pdf/2112.02101.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot