Paper Reading AI Learner

Offline Pre-trained Multi-Agent Decision Transformer: One Big Sequence Model Conquers All StarCraftII Tasks

2021-12-06 08:11:05
Linghui Meng, Muning Wen, Yaodong Yang, Chenyang Le, Xiyun Li, Weinan Zhang, Ying Wen, Haifeng Zhang, Jun Wang, Bo Xu

Abstract

Offline reinforcement learning leverages static datasets to learn optimal policies with no necessity to access the environment. This technique is desirable for multi-agent learning tasks due to the expensiveness of agents' online interactions and the demanding number of samples during training. Yet, in multi-agent reinforcement learning (MARL), the paradigm of offline pre-training with online fine-tuning has never been studied, nor datasets or benchmarks for offline MARL research are available. In this paper, we try to answer the question of whether offline pre-training in MARL is able to learn generalisable policy representations that can help improve the performance of multiple downstream tasks. We start by introducing the first offline MARL dataset with diverse quality levels based on the StarCraftII environment, and then propose the novel architecture of multi-agent decision transformer (MADT) for effective offline learning. MADT leverages Transformer's modelling ability of temporal representations and integrates it with both offline and online MARL tasks. A crucial benefit of MADT is that it learns generalisable policies that can transfer between different types of agents under different task scenarios. When evaluated on StarCraft II offline dataset, MADT demonstrates superior performance than state-of-the-art offline RL baselines. When applied to online tasks, the pre-trained MADT significantly improves sample efficiency, and enjoys strong performance even in zero-shot cases. To our best knowledge, this is the first work that studies and demonstrates the effectiveness of offline pre-trained models in terms of sample efficiency and generalisability enhancements in MARL.

Abstract (translated)

URL

https://arxiv.org/abs/2112.02845

PDF

https://arxiv.org/pdf/2112.02845.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot