Paper Reading AI Learner

Improving Neural Cross-Lingual Summarization via Employing Optimal Transport Distance for Knowledge Distillation

2021-12-07 03:45:02
Thong Nguyen, Luu Anh Tuan

Abstract

Current state-of-the-art cross-lingual summarization models employ multi-task learning paradigm, which works on a shared vocabulary module and relies on the self-attention mechanism to attend among tokens in two languages. However, correlation learned by self-attention is often loose and implicit, inefficient in capturing crucial cross-lingual representations between languages. The matter worsens when performing on languages with separate morphological or structural features, making the cross-lingual alignment more challenging, resulting in the performance drop. To overcome this problem, we propose a novel Knowledge-Distillation-based framework for Cross-Lingual Summarization, seeking to explicitly construct cross-lingual correlation by distilling the knowledge of the monolingual summarization teacher into the cross-lingual summarization student. Since the representations of the teacher and the student lie on two different vector spaces, we further propose a Knowledge Distillation loss using Sinkhorn Divergence, an Optimal-Transport distance, to estimate the discrepancy between those teacher and student representations. Due to the intuitively geometric nature of Sinkhorn Divergence, the student model can productively learn to align its produced cross-lingual hidden states with monolingual hidden states, hence leading to a strong correlation between distant languages. Experiments on cross-lingual summarization datasets in pairs of distant languages demonstrate that our method outperforms state-of-the-art models under both high and low-resourced settings.

Abstract (translated)

URL

https://arxiv.org/abs/2112.03473

PDF

https://arxiv.org/pdf/2112.03473.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot