Paper Reading AI Learner

VIRT: Improving Representation-based Models for Text Matching through Virtual Interaction

2021-12-08 09:49:28
Dan Li, Yang Yang, Hongyin Tang, Jingang Wang, Tong Xu, Wei Wu, Enhong Chen

Abstract

With the booming of pre-trained transformers, remarkable progress has been made on textual pair modeling to support relevant natural language applications. Two lines of approaches are developed for text matching: interaction-based models performing full interactions over the textual pair, and representation-based models encoding the pair independently with siamese encoders. The former achieves compelling performance due to its deep interaction modeling ability, yet with a sacrifice in inference latency. The latter is efficient and widely adopted for practical use, however, suffers from severe performance degradation due to the lack of interactions. Though some prior works attempt to integrate interactive knowledge into representation-based models, considering the computational cost, they only perform late interaction or knowledge transferring at the top layers. Interactive information in the lower layers is still missing, which limits the performance of representation-based solutions. To remedy this, we propose a novel \textit{Virtual} InteRacTion mechanism, termed as VIRT, to enable full and deep interaction modeling in representation-based models without \textit{actual} inference computations. Concretely, VIRT asks representation-based encoders to conduct virtual interactions to mimic the behaviors as interaction-based models do. In addition, the knowledge distilled from interaction-based encoders is taken as supervised signals to promise the effectiveness of virtual interactions. Since virtual interactions only happen at the training stage, VIRT would not increase the inference cost. Furthermore, we design a VIRT-adapted late interaction strategy to fully utilize the learned virtual interactive knowledge.

Abstract (translated)

URL

https://arxiv.org/abs/2112.04195

PDF

https://arxiv.org/pdf/2112.04195.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot