Paper Reading AI Learner

Specializing Versatile Skill Libraries using Local Mixture of Experts

2021-12-08 10:39:21
Onur Celik, Dongzhuoran Zhou, Ge Li, Philipp Becker, Gerhard Neumann

Abstract

A long-cherished vision in robotics is to equip robots with skills that match the versatility and precision of humans. For example, when playing table tennis, a robot should be capable of returning the ball in various ways while precisely placing it at the desired location. A common approach to model such versatile behavior is to use a Mixture of Experts (MoE) model, where each expert is a contextual motion primitive. However, learning such MoEs is challenging as most objectives force the model to cover the entire context space, which prevents specialization of the primitives resulting in rather low-quality components. Starting from maximum entropy reinforcement learning (RL), we decompose the objective into optimizing an individual lower bound per mixture component. Further, we introduce a curriculum by allowing the components to focus on a local context region, enabling the model to learn highly accurate skill representations. To this end, we use local context distributions that are adapted jointly with the expert primitives. Our lower bound advocates an iterative addition of new components, where new components will concentrate on local context regions not covered by the current MoE. This local and incremental learning results in a modular MoE model of high accuracy and versatility, where both properties can be scaled by adding more components on the fly. We demonstrate this by an extensive ablation and on two challenging simulated robot skill learning tasks. We compare our achieved performance to LaDiPS and HiREPS, a known hierarchical policy search method for learning diverse skills.

Abstract (translated)

URL

https://arxiv.org/abs/2112.04216

PDF

https://arxiv.org/pdf/2112.04216.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot