Paper Reading AI Learner

Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models

2021-12-09 10:52:36
Biying Fu, Naser Damer


It is challenging to derive explainability for unsupervised or statistical-based face image quality assessment (FIQA) methods. In this work, we propose a novel set of explainability tools to derive reasoning for different FIQA decisions and their face recognition (FR) performance implications. We avoid limiting the deployment of our tools to certain FIQA methods by basing our analyses on the behavior of FR models when processing samples with different FIQA decisions. This leads to explainability tools that can be applied for any FIQA method with any CNN-based FR solution using activation mapping to exhibit the network's activation derived from the face embedding. To avoid the low discrimination between the general spatial activation mapping of low and high-quality images in FR models, we build our explainability tools in a higher derivative space by analyzing the variation of the FR activation maps of image sets with different quality decisions. We demonstrate our tools and analyze the findings on four FIQA methods, by presenting inter and intra-FIQA method analyses. Our proposed tools and the analyses based on them point out, among other conclusions, that high-quality images typically cause consistent low activation on the areas outside of the central face region, while low-quality images, despite general low activation, have high variations of activation in such areas. Our explainability tools also extend to analyzing single images where we show that low-quality images tend to have an FR model spatial activation that strongly differs from what is expected from a high-quality image where this difference also tends to appear more in areas outside of the central face region and does correspond to issues like extreme poses and facial occlusions. The implementation of the proposed tools is accessible here [link].

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot