Paper Reading AI Learner

Fast and scalable neuroevolution deep learning architecture search for multivariate anomaly detection

2021-12-10 16:14:43
M.Pietroń, D.Żurek, K.Faber

Abstract

The neuroevolution is one of the methodologies that can be used for learning optimal architecture during the training. It uses evolutionary algorithms to generate topology of artificial neural networks (ANN) and its parameters. In this work, a modified neuroevolution technique is presented which incorporates multi-level optimization. The presented approach adapts evolution strategies for evolving ensemble model based on bagging technique, using genetic operators for optimizing single anomaly detection models, reducing the training dataset to speedup the search process and performs non gradient fine tuning. The multivariate anomaly detection as an unsupervised learning task is the case study on which presented approach is tested. Single model optimization is based on mutation, crossover operators and focuses on finding optimal window sizes, the number of layers, layer depths, hyperparameters etc. to boost the anomaly detection scores of new and already known models. The proposed framework and its protocol shows that it is possible to find architecture in a reasonable time which can boost all well known multivariate anomaly detection deep learning architectures. The work concentrates on improvements to multi-level neuroevolution approach for anomaly detection. The main modifications are in the methods of mixing groups and single models evolution, non gradient fine tuning and voting mechanism. The presented framework can be used as an efficient learning network architecture method for any different unsupervised task where autoencoder architectures can be used. The tests were run on SWAT and WADI datasets and presented approach evolved architectures that achieve best scores among other deep learning models.

Abstract (translated)

URL

https://arxiv.org/abs/2112.05640

PDF

https://arxiv.org/pdf/2112.05640.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot