Paper Reading AI Learner

Unsupervised Domain-Specific Deblurring using Scale-Specific Attention

2021-12-12 07:47:45
Praveen Kandula, Rajagopalan. A. N

Abstract

In the literature, coarse-to-fine or scale-recurrent approach i.e. progressively restoring a clean image from its low-resolution versions has been successfully employed for single image deblurring. However, a major disadvantage of existing methods is the need for paired data; i.e. sharpblur image pairs of the same scene, which is a complicated and cumbersome acquisition procedure. Additionally, due to strong supervision on loss functions, pre-trained models of such networks are strongly biased towards the blur experienced during training and tend to give sub-optimal performance when confronted by new blur kernels during inference time. To address the above issues, we propose unsupervised domain-specific deblurring using a scale-adaptive attention module (SAAM). Our network does not require supervised pairs for training, and the deblurring mechanism is primarily guided by adversarial loss, thus making our network suitable for a distribution of blur functions. Given a blurred input image, different resolutions of the same image are used in our model during training and SAAM allows for effective flow of information across the resolutions. For network training at a specific scale, SAAM attends to lower scale features as a function of the current scale. Different ablation studies show that our coarse-to-fine mechanism outperforms end-to-end unsupervised models and SAAM is able to attend better compared to attention models used in literature. Qualitative and quantitative comparisons (on no-reference metrics) show that our method outperforms prior unsupervised methods.

Abstract (translated)

URL

https://arxiv.org/abs/2112.06175

PDF

https://arxiv.org/pdf/2112.06175.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot