Paper Reading AI Learner

Learning Generalizable Vision-Tactile Robotic Grasping Strategy for Deformable Objects via Transformer

2021-12-13 02:07:21
Yunhai Han, Rahul Batra, Nathan Boyd, Tuo Zhao, Yu She, Seth Hutchinson, Ye Zhao

Abstract

Reliable robotic grasping, especially with deformable objects, (e.g. fruit), remains a challenging task due to underactuated contact interactions with a gripper, unknown object dynamics, and variable object geometries. In this study, we propose a Transformer-based robotic grasping framework for rigid grippers that leverage tactile and visual information for safe object grasping. Specifically, the Transformer models learn physical feature embeddings with sensor feedback through performing two pre-defined explorative actions (pinching and sliding) and predict a final grasping outcome through a multilayer perceptron (MLP) with a given grasping strength. Using these predictions, the gripper is commanded with a safe grasping strength for the grasping tasks via inference. Compared with convolutional recurrent networks, the Transformer models can capture the long-term dependencies across the image sequences and process the spatial-temporal features simultaneously. We first benchmark the proposed Transformer models on a public dataset for slip detection. Following that, we show that the Transformer models outperform a CNN+LSTM model in terms of grasping accuracy and computational efficiency. We also collect our own fruit grasping dataset and conduct the online grasping experiments using the proposed framework for both seen and unseen fruits. Our codes and dataset are made public on GitHub.

Abstract (translated)

URL

https://arxiv.org/abs/2112.06374

PDF

https://arxiv.org/pdf/2112.06374.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot