Paper Reading AI Learner

Transferrable Contrastive Learning for Visual Domain Adaptation

2021-12-14 16:23:01
Yang Chen, Yingwei Pan, Yu Wang, Ting Yao, Xinmei Tian, Tao Mei

Abstract

Self-supervised learning (SSL) has recently become the favorite among feature learning methodologies. It is therefore appealing for domain adaptation approaches to consider incorporating SSL. The intuition is to enforce instance-level feature consistency such that the predictor becomes somehow invariant across domains. However, most existing SSL methods in the regime of domain adaptation usually are treated as standalone auxiliary components, leaving the signatures of domain adaptation unattended. Actually, the optimal region where the domain gap vanishes and the instance level constraint that SSL peruses may not coincide at all. From this point, we present a particular paradigm of self-supervised learning tailored for domain adaptation, i.e., Transferrable Contrastive Learning (TCL), which links the SSL and the desired cross-domain transferability congruently. We find contrastive learning intrinsically a suitable candidate for domain adaptation, as its instance invariance assumption can be conveniently promoted to cross-domain class-level invariance favored by domain adaptation tasks. Based on particular memory bank constructions and pseudo label strategies, TCL then penalizes cross-domain intra-class domain discrepancy between source and target through a clean and novel contrastive loss. The free lunch is, thanks to the incorporation of contrastive learning, TCL relies on a moving-averaged key encoder that naturally achieves a temporally ensembled version of pseudo labels for target data, which avoids pseudo label error propagation at no extra cost. TCL therefore efficiently reduces cross-domain gaps. Through extensive experiments on benchmarks (Office-Home, VisDA-2017, Digits-five, PACS and DomainNet) for both single-source and multi-source domain adaptation tasks, TCL has demonstrated state-of-the-art performances.

Abstract (translated)

URL

https://arxiv.org/abs/2112.07516

PDF

https://arxiv.org/pdf/2112.07516.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot