Paper Reading AI Learner

Robustifying automatic speech recognition by extracting slowly varying features

2021-12-14 13:50:23
Matias Pizarro, Dorothea Kolossa, Asja Fischer

Abstract

In the past few years, it has been shown that deep learning systems are highly vulnerable under attacks with adversarial examples. Neural-network-based automatic speech recognition (ASR) systems are no exception. Targeted and untargeted attacks can modify an audio input signal in such a way that humans still recognise the same words, while ASR systems are steered to predict a different transcription. In this paper, we propose a defense mechanism against targeted adversarial attacks consisting in removing fast-changing features from the audio signals, either by applying slow feature analysis, a low-pass filter, or both, before feeding the input to the ASR system. We perform an empirical analysis of hybrid ASR models trained on data pre-processed in such a way. While the resulting models perform quite well on benign data, they are significantly more robust against targeted adversarial attacks: Our final, proposed model shows a performance on clean data similar to the baseline model, while being more than four times more robust.

Abstract (translated)

URL

https://arxiv.org/abs/2112.07400

PDF

https://arxiv.org/pdf/2112.07400.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot