Paper Reading AI Learner

Rethinking Influence Functions of Neural Networks in the Over-parameterized Regime

2021-12-15 17:44:00
Rui Zhang, Shihua Zhang

Abstract

Understanding the black-box prediction for neural networks is challenging. To achieve this, early studies have designed influence function (IF) to measure the effect of removing a single training point on neural networks. However, the classic implicit Hessian-vector product (IHVP) method for calculating IF is fragile, and theoretical analysis of IF in the context of neural networks is still lacking. To this end, we utilize the neural tangent kernel (NTK) theory to calculate IF for the neural network trained with regularized mean-square loss, and prove that the approximation error can be arbitrarily small when the width is sufficiently large for two-layer ReLU networks. We analyze the error bound for the classic IHVP method in the over-parameterized regime to understand when and why it fails or not. In detail, our theoretical analysis reveals that (1) the accuracy of IHVP depends on the regularization term, and is pretty low under weak regularization; (2) the accuracy of IHVP has a significant correlation with the probability density of corresponding training points. We further borrow the theory from NTK to understand the IFs better, including quantifying the complexity for influential samples and depicting the variation of IFs during the training dynamics. Numerical experiments on real-world data confirm our theoretical results and demonstrate our findings.

Abstract (translated)

URL

https://arxiv.org/abs/2112.08297

PDF

https://arxiv.org/pdf/2112.08297.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot