Paper Reading AI Learner

M-FasterSeg: An Efficient Semantic Segmentation Network Based on Neural Architecture Search


Abstract

Image semantic segmentation technology is one of the key technologies for intelligent systems to understand natural scenes. As one of the important research directions in the field of visual intelligence, this technology has broad application scenarios in the fields of mobile robots, drones, smart driving, and smart security. However, in the actual application of mobile robots, problems such as inaccurate segmentation semantic label prediction and loss of edge information of segmented objects and background may occur. This paper proposes an improved structure of a semantic segmentation network based on a deep learning network that combines self-attention neural network and neural network architecture search methods. First, a neural network search method NAS (Neural Architecture Search) is used to find a semantic segmentation network with multiple resolution branches. In the search process, combine the self-attention network structure module to adjust the searched neural network structure, and then combine the semantic segmentation network searched by different branches to form a fast semantic segmentation network structure, and input the picture into the network structure to get the final forecast result. The experimental results on the Cityscapes dataset show that the accuracy of the algorithm is 69.8%, and the segmentation speed is 48/s. It achieves a good balance between real-time and accuracy, can optimize edge segmentation, and has a better performance in complex scenes. Good robustness is suitable for practical application.

Abstract (translated)

URL

https://arxiv.org/abs/2112.07918

PDF

https://arxiv.org/pdf/2112.07918.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot