Paper Reading AI Learner

A learning-based approach to feature recognition of Engineering shapes

2021-12-15 08:35:18
Lakshmi Priya Muraleedharan, Ramanathan Muthuganapathy

Abstract

In this paper, we propose a machine learning approach to recognise engineering shape features such as holes, slots, etc. in a CAD mesh model. With the advent of digital archiving, newer manufacturing techniques such as 3D printing, scanning of components and reverse engineering, CAD data is proliferated in the form of mesh model representation. As the number of nodes and edges become larger in a mesh model as well as the possibility of presence of noise, direct application of graph-based approaches would not only be expensive but also difficult to be tuned for noisy data. Hence, this calls for newer approaches to be devised for feature recognition for CAD models represented in the form of mesh. Here, we show that a discrete version of Gauss map can be used as a signature for a feature learning. We show that this approach not only requires fewer memory requirements but also the training time is quite less. As no network architecture is involved, the number of hyperparameters are much lesser and can be tuned in a much faster time. The recognition accuracy is also very similar to that of the one obtained using 3D convolutional neural networks (CNN) but in much lesser running time and storage requirements. A comparison has been done with other non-network based machine learning approaches to show that our approach has the highest accuracy. We also show the recognition results for CAD models having multiple features as well as complex/interacting features obtained from public benchmarks. The ability to handle noisy data has also been demonstrated.

Abstract (translated)

URL

https://arxiv.org/abs/2112.07962

PDF

https://arxiv.org/pdf/2112.07962.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot