Paper Reading AI Learner

GIMIRec: Global Interaction Information Aware Multi-Interest Framework for Sequential Recommendation

2021-12-16 09:12:33
Jie Zhang, Ke-Jia Chen, Jingqiang Chen

Abstract

Sequential recommendation based on multi-interest framework models the user's recent interaction sequence into multiple different interest vectors, since a single low-dimensional vector cannot fully represent the diversity of user interests. However, most existing models only intercept users' recent interaction behaviors as training data, discarding a large amount of historical interaction sequences. This may raise two issues. On the one hand, data reflecting multiple interests of users is missing; on the other hand, the co-occurrence between items in historical user-item interactions is not fully explored. To tackle the two issues, this paper proposes a novel sequential recommendation model called "Global Interaction Aware Multi-Interest Framework for Sequential Recommendation (GIMIRec)". Specifically, a global context extraction module is firstly proposed without introducing any external information, which calculates a weighted co-occurrence matrix based on the constrained co-occurrence number of each item pair and their time interval from the historical interaction sequences of all users and then obtains the global context embedding of each item by using a simplified graph convolution. Secondly, the time interval of each item pair in the recent interaction sequence of each user is captured and combined with the global context item embedding to get the personalized item embedding. Finally, a self-attention based multi-interest framework is applied to learn the diverse interests of users for sequential recommendation. Extensive experiments on the three real-world datasets of Amazon-Books, Taobao-Buy and Amazon-Hybrid show that the performance of GIMIRec on the Recall, NDCG and Hit Rate indicators is significantly superior to that of the state-of-the-art methods. Moreover, the proposed global context extraction module can be easily transplanted to most sequential recommendation models.

Abstract (translated)

URL

https://arxiv.org/abs/2112.08717

PDF

https://arxiv.org/pdf/2112.08717.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot