Paper Reading AI Learner

Explainable Natural Language Processing with Matrix Product States

2021-12-16 05:10:32
Jirawat Tangpanitanon, Chanatip Mangkang, Pradeep Bhadola, Yuichiro Minato, Dimitris Angelakis, Thiparat Chotibut

Abstract

Despite empirical successes of recurrent neural networks (RNNs) in natural language processing (NLP), theoretical understanding of RNNs is still limited due to intrinsically complex computations in RNNs. We perform a systematic analysis of RNNs' behaviors in a ubiquitous NLP task, the sentiment analysis of movie reviews, via the mapping between a class of RNNs called recurrent arithmetic circuits (RACs) and a matrix product state (MPS). Using the von-Neumann entanglement entropy (EE) as a proxy for information propagation, we show that single-layer RACs possess a maximum information propagation capacity, reflected by the saturation of the EE. Enlarging the bond dimension of an MPS beyond the EE saturation threshold does not increase the prediction accuracies, so a minimal model that best estimates the data statistics can be constructed. Although the saturated EE is smaller than the maximum EE achievable by the area law of an MPS, our model achieves ~99% training accuracies in realistic sentiment analysis data sets. Thus, low EE alone is not a warrant against the adoption of single-layer RACs for NLP. Contrary to a common belief that long-range information propagation is the main source of RNNs' expressiveness, we show that single-layer RACs also harness high expressiveness from meaningful word vector embeddings. Our work sheds light on the phenomenology of learning in RACs and more generally on the explainability aspects of RNNs for NLP, using tools from many-body quantum physics.

Abstract (translated)

URL

https://arxiv.org/abs/2112.08628

PDF

https://arxiv.org/pdf/2112.08628.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot