Paper Reading AI Learner

Influence of Pedestrian Collision Warning Systems on Driver Behavior: A Driving Simulator Study

2021-12-14 20:02:53
Snehanshu Banerjee, Mansoureh Jeihani, Nashid K Khadem, Md. Muhib Kabir

Abstract

With the advent of connected and automated vehicle (CAV) technology, there is an increasing need to evaluate driver behavior while using such technology. In this first of a kind study, a pedestrian collision warning (PCW) system using CAV technology, was introduced in a driving simulator environment, to evaluate driver braking behavior, in the presence of a jaywalking pedestrian. A total of 93 participants from diverse socio-economic backgrounds were recruited for this study, for which a virtual network of downtown Baltimore was created. An eye tracking device was also used to observe distractions and head movements. A Log logistic accelerated failure time (AFT) distribution model was used for this analysis, to calculate speed reduction times; time from the moment the pedestrian becomes visible, to the point where a minimum speed was reached, to allow the pedestrian to pass. The presence of the PCW system significantly impacted the speed reduction time and deceleration rate, as it increased the former and reduced the latter, which proves the effectiveness of this system in providing an effective driving maneuver, by drastically reducing speed. A jerk analysis is conducted to analyze the suddenness of braking and acceleration. Gaze analysis showed that the system was able to attract the attention of the drivers, as the majority of the drivers noticed the displayed warning. The familiarity of the driver with the route and connected vehicles reduces the speed reduction time; gender also can have a significant impact as males tend to have longer speed reduction time, i.e. more time to comfortably brake and allow the pedestrian to pass.

Abstract (translated)

URL

https://arxiv.org/abs/2112.09074

PDF

https://arxiv.org/pdf/2112.09074.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot