Paper Reading AI Learner

Towards fuzzification of adaptation rules in self-adaptive architectures

2021-12-17 12:17:16
Tomáš Bureš, Petr Hnětynka, Martin Kruliš, Danylo Khalyeyev, Sebastian Hahner, Stephan Seifermann, Maximilian Walter, Robert Heinrich

Abstract

In this paper, we focus on exploiting neural networks for the analysis and planning stage in self-adaptive architectures. The studied motivating cases in the paper involve existing (legacy) self-adaptive architectures and their adaptation logic, which has been specified by logical rules. We further assume that there is a need to endow these systems with the ability to learn based on examples of inputs and expected outputs. One simple option to address such a need is to replace the reasoning based on logical rules with a neural network. However, this step brings several problems that often create at least a temporary regress. The reason is the logical rules typically represent a large and tested body of domain knowledge, which may be lost if the logical rules are replaced by a neural network. Further, the black-box nature of generic neural networks obfuscates how the systems work inside and consequently introduces more uncertainty. In this paper, we present a method that makes it possible to endow an existing self-adaptive architectures with the ability to learn using neural networks, while preserving domain knowledge existing in the logical rules. We introduce a continuum between the existing rule-based system and a system based on a generic neural network. We show how to navigate in this continuum and create a neural network architecture that naturally embeds the original logical rules and how to gradually scale the learning potential of the network, thus controlling the uncertainty inherent to all soft computing models. We showcase and evaluate the approach on representative excerpts from two larger real-life use cases.

Abstract (translated)

URL

https://arxiv.org/abs/2112.09468

PDF

https://arxiv.org/pdf/2112.09468.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot