Paper Reading AI Learner

Information-theoretic stochastic contrastive conditional GAN: InfoSCC-GAN

2021-12-17 17:56:30
Vitaliy Kinakh, Mariia Drozdova, Guillaume Quétant, Tobias Golling, Slava Voloshynovskiy

Abstract

Conditional generation is a subclass of generative problems where the output of the generation is conditioned by the attribute information. In this paper, we present a stochastic contrastive conditional generative adversarial network (InfoSCC-GAN) with an explorable latent space. The InfoSCC-GAN architecture is based on an unsupervised contrastive encoder built on the InfoNCE paradigm, an attribute classifier and an EigenGAN generator. We propose a novel training method, based on generator regularization using external or internal attributes every $n$-th iteration, using a pre-trained contrastive encoder and a pre-trained classifier. The proposed InfoSCC-GAN is derived based on an information-theoretic formulation of mutual information maximization between input data and latent space representation as well as latent space and generated data. Thus, we demonstrate a link between the training objective functions and the above information-theoretic formulation. The experimental results show that InfoSCC-GAN outperforms the "vanilla" EigenGAN in the image generation on AFHQ and CelebA datasets. In addition, we investigate the impact of discriminator architectures and loss functions by performing ablation studies. Finally, we demonstrate that thanks to the EigenGAN generator, the proposed framework enjoys a stochastic generation in contrast to vanilla deterministic GANs yet with the independent training of encoder, classifier, and generator in contrast to existing frameworks. Code, experimental results, and demos are available online at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2112.09653

PDF

https://arxiv.org/pdf/2112.09653.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot