Paper Reading AI Learner

Expedition: A System for the Unsupervised Learning of a Hierarchy of Concepts

2021-12-17 06:49:18
Omid Madani

Abstract

We present a system for bottom-up cumulative learning of myriad concepts corresponding to meaningful character strings, and their part-related and prediction edges. The learning is self-supervised in that the concepts discovered are used as predictors as well as targets of prediction. We devise an objective for segmenting with the learned concepts, derived from comparing to a baseline prediction system, that promotes making and using larger concepts, which in turn allows for predicting larger spans of text, and we describe a simple technique to promote exploration, i.e. trying out newly generated concepts in the segmentation process. We motivate and explain a layering of the concepts, to help separate the (conditional) distributions learnt among concepts. The layering of the concepts roughly corresponds to a part-whole concept hierarchy. With rudimentary segmentation and learning algorithms, the system is promising in that it acquires many concepts (tens of thousands in our small-scale experiments), and it learns to segment text well: when fed with English text with spaces removed, starting at the character level, much of what is learned respects word or phrase boundaries, and over time the average number of "bad" splits within segmentations, i.e. splits inside words, decreases as larger concepts are discovered and the system learns when to use them during segmentation. We report on promising experiments when the input text is converted to binary and the system begins with only two concepts, "0" and "1". The system is transparent, in the sense that it is easy to tell what the concepts learned correspond to, and which ones are active in a segmentation, or how the system "sees" its input. We expect this framework to be extensible and we discuss the current limitations and a number of directions for enhancing the learning and inference capabilities.

Abstract (translated)

URL

https://arxiv.org/abs/2112.09348

PDF

https://arxiv.org/pdf/2112.09348.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot