Paper Reading AI Learner

Exploring the Impact of Virtualization on the Usability of the Deep Learning Applications

2021-12-17 21:51:34
Davood G. Samani, Mohsen Amini Salehi

Abstract

Deep Learning-based (DL) applications are becoming increasingly popular and advancing at an unprecedented pace. While many research works are being undertaken to enhance Deep Neural Networks (DNN) -- the centerpiece of DL applications -- practical deployment challenges of these applications in the Cloud and Edge systems, and their impact on the usability of the applications have not been sufficiently investigated. In particular, the impact of deploying different virtualization platforms, offered by the Cloud and Edge, on the usability of DL applications (in terms of the End-to-End (E2E) inference time) has remained an open question. Importantly, resource elasticity (by means of scale-up), CPU pinning, and processor type (CPU vs GPU) configurations have shown to be influential on the virtualization overhead. Accordingly, the goal of this research is to study the impact of these potentially decisive deployment options on the E2E performance, thus, usability of the DL applications. To that end, we measure the impact of four popular execution platforms (namely, bare-metal, virtual machine (VM), container, and container in VM) on the E2E inference time of four types of DL applications, upon changing processor configuration (scale-up, CPU pinning) and processor types. This study reveals a set of interesting and sometimes counter-intuitive findings that can be used as best practices by Cloud solution architects to efficiently deploy DL applications in various systems. The notable finding is that the solution architects must be aware of the DL application characteristics, particularly, their pre- and post-processing requirements, to be able to optimally choose and configure an execution platform, determine the use of GPU, and decide the efficient scale-up range.

Abstract (translated)

URL

https://arxiv.org/abs/2112.09780

PDF

https://arxiv.org/pdf/2112.09780.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot