Paper Reading AI Learner

Towards the Explanation of Graph Neural Networks in Digital Pathology with Information Flows

2021-12-18 10:19:01
Junchi Yu, Tingyang Xu, Ran He

Abstract

As Graph Neural Networks (GNNs) are widely adopted in digital pathology, there is increasing attention to developing explanation models (explainers) of GNNs for improved transparency in clinical decisions. Existing explainers discover an explanatory subgraph relevant to the prediction. However, such a subgraph is insufficient to reveal all the critical biological substructures for the prediction because the prediction will remain unchanged after removing that subgraph. Hence, an explanatory subgraph should be not only necessary for prediction, but also sufficient to uncover the most predictive regions for the explanation. Such explanation requires a measurement of information transferred from different input subgraphs to the predictive output, which we define as information flow. In this work, we address these key challenges and propose IFEXPLAINER, which generates a necessary and sufficient explanation for GNNs. To evaluate the information flow within GNN's prediction, we first propose a novel notion of predictiveness, named $f$-information, which is directional and incorporates the realistic capacity of the GNN model. Based on it, IFEXPLAINER generates the explanatory subgraph with maximal information flow to the prediction. Meanwhile, it minimizes the information flow from the input to the predictive result after removing the explanation. Thus, the produced explanation is necessarily important to the prediction and sufficient to reveal the most crucial substructures. We evaluate IFEXPLAINER to interpret GNN's predictions on breast cancer subtyping. Experimental results on the BRACS dataset show the superior performance of the proposed method.

Abstract (translated)

URL

https://arxiv.org/abs/2112.09895

PDF

https://arxiv.org/pdf/2112.09895.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot